MATH 124B: HOMEWORK 2

Suggested due date: August 15th, 2016

(1) Consider the geometric series $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$.
(a) Does it converge pointwise in the interval $-1<x<1$?
(b) Does it converge uniformly in the interval $-1<x<1$?
(c) Does it converge in the L^{2} sense in the interval $-1<x<1$?
(2) Let $f(x)$ be a function on $(-L, L)$ that has a continuous derivative and satisfies the periodic boundary conditions. Let a_{n} be the Fourier cosine coefficients and b_{n} be the Fourier sine coefficients of $f(x)$ and let a_{n}^{\prime} and b_{n}^{\prime} be the corresponding Fourier coefficients of its derivative $f^{\prime}(x)$. Show that

$$
a_{n}^{\prime}=\frac{n \pi b_{n}}{L} \text { and } b_{n}^{\prime}=\frac{-n \pi a_{n}}{L} \text { for } n \neq 0
$$

Deduce from this that there is a constant k independent of n such that

$$
\left|a_{n}\right|+\left|b_{n}\right| \leq \frac{k}{n} \text { for all } n
$$

Note, this does not mean that the differentiated series converges.
(3) If $f(x)$ is a piecewise continuous function in $[-L, L]$, show that its indefinite integral $F(x)=\int_{-L}^{x} f(s) d s$ has a Full Fourier series that converges pointwise.
(4) Write this convergent series for $f(x)$ explicitly in terms of the Fourier coefficients a_{0}, a_{n} and b_{n} of $f(x)$. Why does this imply that we can integrate the terms of the Fourier series term by term?
(5) Find the sum $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$.
(6) Prove the inequality $L \int_{0}^{L}\left(f^{\prime}(x)\right)^{2} d x \geq(f(L)-f(0))^{2}$, for any real function $f(x)$ whose derivative $f^{\prime}(x)$ is continuous.
(7) Show that if $f(x)$ is a C^{1} function in $[-\pi, \pi]$ that satisfies the periodic boundary condition and if $\int_{-\pi}^{\pi} f(x)=0$, then

$$
\int_{-\pi}^{\pi}|f|^{2} d x \leq \int_{-\pi}^{\pi}\left|f^{\prime}\right|^{2} d x
$$

This inequality is known as Wirtinger's inequality and is used in the proof of the isoperimetric inequality.

Solutions

1. a. We will show that

$$
\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\frac{1}{1+x^{2}}
$$

Using the formula

$$
\sum_{n=0}^{N} t^{n}=\frac{1-t^{N+1}}{1-t}
$$

we have

$$
\sum_{n=0}^{N}\left(-x^{2}\right)^{n}=\frac{1-\left(-x^{2}\right)^{N+1}}{1+x^{2}}
$$

Hence,

$$
\left|\sum_{n=0}^{N}\left(-x^{2}\right)^{n}-\frac{1}{1+x^{2}}\right|=\frac{x^{2 N+2}}{1+x^{2}} .
$$

Since $|x| \leq 1$, the right hand side goes to 0 as $N \rightarrow \infty$.
b. We have

$$
\sup _{[-1,1]}\left|\sum_{n=0}^{N}\left(-x^{2}\right)^{n}-\frac{1}{1+x^{2}}\right| \geq \frac{1}{2}
$$

(why does the above hold independent of N ?) hence does not converge uniformly.
c. The L^{2} norm is

$$
\int_{-1}^{1} \frac{x^{4 N+4}}{\left(1+x^{2}\right)^{2}} d x \leq 2 \int_{0}^{1} x^{4 N+4} d x=\frac{2}{4 N+5} \rightarrow 0
$$

as $N \rightarrow \infty$. (Why does the first inequality hold?)
2. The coefficients are given by

$$
\left\{\begin{array}{l}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
a_{n}^{\prime}=\frac{1}{L} \int_{-L}^{L} f^{\prime}(x) \cos \left(\frac{n \pi}{L} x\right) d x \\
b_{n}^{\prime}=\frac{1}{L} \int_{-L}^{L} f^{\prime}(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{array}\right.
$$

Integrating by parts,

$$
\begin{aligned}
a_{n}^{\prime} & =\frac{1}{L} \int_{-L}^{L} f^{\prime}(x) \cos \left(\frac{n \pi}{L} x\right) d x \\
& =-\frac{1}{L} \int_{-L}^{L} f(x)\left(\cos \left(\frac{n \pi}{L} x\right)\right)^{\prime} d x \\
& =\frac{n \pi}{L^{2}} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x \\
& =\frac{n \pi}{L} b_{n}
\end{aligned}
$$

(why does the boundary term in the integration by parts vanish?) Similar for the other case.
Therefore, we have

$$
\left|a_{n}\right|+\left|b_{n}\right|=\frac{L}{n \pi}\left(\left|a_{n}\right|^{\prime}+\left|b_{n}\right|^{\prime}\right)
$$

Now

$$
\begin{aligned}
\left|a_{n}^{\prime}\right| & =\left|\frac{1}{L} \int_{-L}^{L} f^{\prime}(x) \cos \left(\frac{n \pi}{L} x\right) d x\right| \\
& \leq \frac{1}{L} \int_{-L}^{L}\left|f^{\prime}(x)\right| d x<\infty
\end{aligned}
$$

hence we obtain a constant independent of n.
3. Since $F(x)$ is differentiable, with $F^{\prime}(x)=f(x)$ piecewise continuous, we can apply the pointwise convergence theorem for classical Fourier series.
4. Let A_{n}, B_{n} be the Fourier coefficients of $F(x)$.

$$
\begin{aligned}
A_{n} & =\frac{1}{L} \int_{-L}^{L} F(x) \cos \left(\frac{n \pi}{L} x\right) d x \\
& =\frac{1}{n \pi} \int_{-L}^{L}\left(\int_{-L}^{x} f(s) d s\right) d\left(\sin \left(\frac{n \pi}{L} x\right)\right) \\
& =-\frac{1}{n \pi} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x \\
& =-\frac{L}{n \pi} b_{n}
\end{aligned}
$$

(why does the boundary term for integration by parts vanish?) and similarly we can show

$$
B_{n}=\frac{L}{n \pi} a_{n}
$$

Therefore

$$
\begin{aligned}
F(x) & =\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{L} x\right)+B_{n} \sin \left(\frac{n \pi}{L} x\right) \\
& =\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}-\frac{L}{n \pi} b_{n} \cos \left(\frac{n \pi}{L} x\right)+\frac{L}{n \pi} a_{n} \sin \left(\frac{n \pi}{L} x\right) .
\end{aligned}
$$

now if we formally integrate f, assuming that $a_{0}=0$. Then we have,

$$
\int_{-L}^{x} f(s) d s=\int_{-L}^{x} \sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} s\right)+b_{n} \sin \left(\frac{n \pi}{L} s\right) d s
$$

which equals $F(x)$ except for a constant. In fact, if $a_{0} \neq 0$, then the indefinite integral is no longer a Fourier series, however the convergence of the infinite sum is guaranteed.
5. This can be done in a number of ways. We will need to use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$. First compute the Fourier sine series for x^{2} on the interval $(0,1)$, which gives the coefficients

$$
A_{m}= \begin{cases}-\frac{2}{m \pi} & m \text { even } \\ \frac{2 m^{2} \pi^{2}-8}{m^{3} \pi^{3}} & m \text { odd }\end{cases}
$$

By Parseval's identity, we have

$$
\sum_{m=1}^{\infty}\left|A_{m}\right|^{2} \int_{0}^{1} \sin ^{2}(m \pi x) d x=\int_{0}^{1} x^{4} d x
$$

Therefore,

$$
\sum_{m \text { even }} \frac{4}{m^{2}} \pi^{2}+\sum_{m \text { odd }}\left(\frac{4}{m^{2} \pi^{2}}-\frac{32}{m^{4} \pi^{4}}+\frac{64}{m^{6} \pi^{6}}\right)=\frac{2}{5}
$$

Now the $1 / m^{2}$ term is known and the odd part of $1 / m^{4}$ can be computed from the whole series by

$$
\sum_{\text {odd }} \frac{1}{m^{4}}+\sum_{m=1}^{\infty} \frac{1}{(2 m)^{4}}=\frac{\pi^{4}}{90}
$$

hence $\sum_{m \text { odd }} \frac{1}{m^{4}}=\frac{\pi^{4}}{96}$. Hence

$$
\frac{64}{\pi^{6}} \sum_{m \text { odd }} \frac{1}{m^{6}}=\frac{1}{15}
$$

or $\sum_{m \text { odd }} \frac{1}{m^{6}}=\frac{\pi^{6}}{960}$. Since the whole series is the even and the odd terms and the even terms are $\sum_{m=1}^{\infty} \frac{1}{(2 m)^{6}}=\frac{1}{64} \sum_{m=1} \frac{1}{m^{6}}$ therefore

$$
\sum_{m=1}^{\infty} \frac{1}{m^{6}}=\frac{\pi^{6}}{945}
$$

6. Apply Cauchy-Schwarz with f^{\prime} and 1.
7. From the assumption, we know that for the Fourier coefficient of $f, A_{0}=0$. By Parseval's equality, we have

$$
\left.\int_{-\pi}^{\pi}|f|^{2} d x=\pi \sum_{n=1}\left(\left|A_{n}\right|^{2}+\left|B_{n}\right|^{2}\right)\right)
$$

Note that $\int_{-\pi}^{\pi} X_{n}^{2}=\pi$ for $X_{n}=\cos (n x)$ and $X_{n}=\sin (n x)$. It was shown before that $A_{n}=-\frac{1}{n} B_{n}^{\prime}$ and $B_{n}=\frac{1}{n} A_{n}^{\prime}$ hence

$$
\left.\left.\pi \sum_{n=1}\left(\left|A_{n}\right|^{2}+\left|B_{n}\right|^{2}\right)\right) \leq \pi \sum_{n=1}\left(\left|A_{n}^{\prime}\right|^{2}+\left|B_{n}^{\prime}\right|^{2}\right)\right)=\int_{-\pi}^{\pi}\left(f^{\prime}\right)^{2} d x
$$

Note that $A_{0}^{\prime}=\int_{-\pi}^{\pi} f^{\prime} d x=f(\pi)-f(-\pi)=0$ by the periodic boundary condition. (Further consideration: When is the inequality an equality? Which part of the proof will give us an idea of what type of function will be an equality? The equality case gives us a hint as to why this inequality is related to the isoperimetric inequality.)

