
MATH 124B: HOMEWORK 2

Suggested due date: August 15th, 2016

(1) Consider the geometric series
∞∑
n=0

(−1)nx2n.

(a) Does it converge pointwise in the interval −1 < x < 1?

(b) Does it converge uniformly in the interval −1 < x < 1?

(c) Does it converge in the L2 sense in the interval −1 < x < 1?

(2) Let f(x) be a function on (−L,L) that has a continuous derivative and satisfies the periodic
boundary conditions. Let an be the Fourier cosine coefficients and bn be the Fourier
sine coefficients of f(x) and let a′n and b′n be the corresponding Fourier coefficients of its
derivative f ′(x). Show that

a′n =
nπbn
L

and b′n =
−nπan
L

for n 6= 0.

Deduce from this that there is a constant k independent of n such that

|an|+ |bn| ≤
k

n
for all n.

Note, this does not mean that the differentiated series converges.

(3) If f(x) is a piecewise continuous function in [−L,L], show that its indefinite integral

F (x) =

∫ x

−L
f(s)ds has a Full Fourier series that converges pointwise.

(4) Write this convergent series for f(x) explicitly in terms of the Fourier coefficients a0, an
and bn of f(x). Why does this imply that we can integrate the terms of the Fourier series
term by term?

(5) Find the sum
∞∑
n=1

1

n6
.

(6) Prove the inequality L

∫ L

0

(f ′(x))2dx ≥ (f(L) − f(0))2, for any real function f(x) whose

derivative f ′(x) is continuous.

(7) Show that if f(x) is a C1 function in [−π, π] that satisfies the periodic boundary condition
and if

∫ π
−π f(x) = 0, then ∫ π

−π
|f |2dx ≤

∫ π

−π
|f ′|2dx.

This inequality is known as Wirtinger’s inequality and is used in the proof of the isoperi-
metric inequality.
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Solutions

1. a. We will show that
∞∑
n=0

(−x2)n =
1

1 + x2
.

Using the formula
N∑
n=0

tn =
1− tN+1

1− t

we have
N∑
n=0

(−x2)n =
1− (−x2)N+1

1 + x2
.

Hence, ∣∣∣∣∣
N∑
n=0

(−x2)n − 1

1 + x2

∣∣∣∣∣ =
x2N+2

1 + x2
.

Since |x| ≤ 1, the right hand side goes to 0 as N →∞.
b. We have

sup
[−1,1]

∣∣∣∣∣
N∑
n=0

(−x2)n − 1

1 + x2

∣∣∣∣∣ ≥ 1

2

(why does the above hold independent of N?) hence does not converge uniformly.
c. The L2 norm is ∫ 1

−1

x4N+4

(1 + x2)2
dx ≤ 2

∫ 1

0

x4N+4dx =
2

4N + 5
→ 0

as N →∞. (Why does the first inequality hold?)

2. The coefficients are given by{
an = 1

L

∫ L
−L f(x) cos(nπ

L
x)dx

bn = 1
L

∫ L
−L f(x) sin(nπ

L
x)dx

and {
a′n = 1

L

∫ L
−L f

′(x) cos(nπ
L
x)dx

b′n = 1
L

∫ L
−L f

′(x) sin(nπ
L
x)dx

.

Integrating by parts,

a′n =
1

L

∫ L

−L
f ′(x) cos(

nπ

L
x)dx

= − 1

L

∫ L

−L
f(x)(cos(

nπ

L
x))′dx

=
nπ

L2

∫ L

−L
f(x) sin(

nπ

L
x)dx

=
nπ

L
bn
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(why does the boundary term in the integration by parts vanish?) Similar for the other case.
Therefore, we have

|an|+ |bn| =
L

nπ
(|an|′ + |bn|′)

Now

|a′n| =
∣∣∣∣ 1L
∫ L

−L
f ′(x) cos(

nπ

L
x)dx

∣∣∣∣
≤ 1

L

∫ L

−L
|f ′(x)|dx <∞

hence we obtain a constant independent of n.

3. Since F (x) is differentiable, with F ′(x) = f(x) piecewise continuous, we can apply the
pointwise convergence theorem for classical Fourier series.

4. Let An, Bn be the Fourier coefficients of F (x).

An =
1

L

∫ L

−L
F (x) cos(

nπ

L
x)dx

=
1

nπ

∫ L

−L

(∫ x

−L
f(s)ds

)
d(sin(

nπ

L
x))

= − 1

nπ

∫ L

−L
f(x) sin(

nπ

L
x)dx

= − L

nπ
bn

(why does the boundary term for integration by parts vanish?) and similarly we can show

Bn =
L

nπ
an

Therefore

F (x) =
1

2
A0 +

∞∑
n=1

An cos(
nπ

L
x) +Bn sin(

nπ

L
x)

=
1

2
A0 +

∞∑
n=1

− L

nπ
bn cos(

nπ

L
x) +

L

nπ
an sin(

nπ

L
x).

now if we formally integrate f , assuming that a0 = 0. Then we have,∫ x

−L
f(s)ds =

∫ x

−L

∞∑
n=1

an cos(
nπ

L
s) + bn sin(

nπ

L
s)ds

which equals F (x) except for a constant. In fact, if a0 6= 0, then the indefinite integral is no longer
a Fourier series, however the convergence of the infinite sum is guaranteed.
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5. This can be done in a number of ways. We will need to use the fact that
∞∑
n=1

1

n2
=
π2

6
and

∞∑
n=1

1

n4
=
π4

90
. First compute the Fourier sine series for x2 on the interval (0, 1), which gives the

coefficients

Am =

{
− 2
mπ

m even
2m2π2−8
m3π3 m odd.

By Parseval’s identity, we have

∞∑
m=1

|Am|2
∫ 1

0

sin2(mπx)dx =

∫ 1

0

x4dx

Therefore, ∑
m even

4

m2
π2 +

∑
m odd

(
4

m2π2
− 32

m4π4
+

64

m6π6

)
=

2

5

Now the 1/m2 term is known and the odd part of 1/m4 can be computed from the whole series by

∑
odd

1

m4
+
∞∑
m=1

1

(2m)4
=
π4

90

hence
∑
m odd

1

m4
=
π4

96
. Hence

64

π6

∑
m odd

1

m6
=

1

15

or
∑
m odd

1

m6
=

π6

960
. Since the whole series is the even and the odd terms and the even terms are

∞∑
m=1

1

(2m)6
=

1

64

∑
m=1

1

m6
therefore

∞∑
m=1

1

m6
=

π6

945
.

6. Apply Cauchy-Schwarz with f ′ and 1.

7. From the assumption, we know that for the Fourier coefficient of f , A0 = 0. By Parseval’s
equality, we have ∫ π

−π
|f |2dx = π

∑
n=1

(|An|2 + |Bn|2))
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Note that
∫ π
−πX

2
n = π for Xn = cos(nx) and Xn = sin(nx). It was shown before that An = − 1

n
B′n

and Bn = 1
n
A′n hence

π
∑
n=1

(|An|2 + |Bn|2)) ≤ π
∑
n=1

(|A′n|2 + |B′n|2)) =

∫ π

−π
(f ′)2dx

Note that A′0 =
∫ π
−π f

′dx = f(π) − f(−π) = 0 by the periodic boundary condition. (Further
consideration: When is the inequality an equality? Which part of the proof will give us an idea
of what type of function will be an equality? The equality case gives us a hint as to why this
inequality is related to the isoperimetric inequality.)
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